15,546 research outputs found

    1.0.H Question Bank Jan 20 Sensation

    Get PDF
    WELCOME to WINDOWS on the INQUIRY CLASSROOM! You have landed on a piece of a National Science Foundation Project (DUE 1245730) directed by Professor Chris Bauer, Chemistry Department, University of New Hampshire. This is one part of a completely documented inquiry-based university science course called “Fire & Ice” which explores the nature of heat and temperature. There are multiple video perspectives and commentary from instructors and students, and documents of all course materials (agenda, instructions, student work). It’s too complicated to explain here. Take a look at the user orientation document at this link

    5.0.C.1 Hands-on Gas Law Experiments

    Get PDF
    WELCOME to WINDOWS on the INQUIRY CLASSROOM! You have landed on a piece of a National Science Foundation Project (DUE 1245730) directed by Professor Chris Bauer, Chemistry Department, University of New Hampshire. This is one part of a completely documented inquiry-based university science course called “Fire & Ice” which explores the nature of heat and temperature. There are multiple video perspectives and commentary from instructors and students, and documents of all course materials (agenda, instructions, student work). It’s too complicated to explain here. Take a look at the user orientation document at this link

    1.0.A Daily Outline

    Get PDF
    WELCOME to WINDOWS on the INQUIRY CLASSROOM! You have landed on a piece of a National Science Foundation Project (DUE 1245730) directed by Professor Chris Bauer, Chemistry Department, University of New Hampshire. This is one part of a completely documented inquiry-based university science course called “Fire & Ice” which explores the nature of heat and temperature. There are multiple video perspectives and commentary from instructors and students, and documents of all course materials (agenda, instructions, student work). It’s too complicated to explain here. Take a look at the user orientation document at this link

    5.0.D Materials Day 5 Compressibility and Charles Law

    Get PDF
    WELCOME to WINDOWS on the INQUIRY CLASSROOM! You have landed on a piece of a National Science Foundation Project (DUE 1245730) directed by Professor Chris Bauer, Chemistry Department, University of New Hampshire. This is one part of a completely documented inquiry-based university science course called “Fire & Ice” which explores the nature of heat and temperature. There are multiple video perspectives and commentary from instructors and students, and documents of all course materials (agenda, instructions, student work). It’s too complicated to explain here. Take a look at the user orientation document at this link

    THE SCIENTIST'S PERSPECTIVE ON RISK

    Get PDF
    Risk and Uncertainty,

    Atomic hydrogen cleaning of GaSb(001) surfaces

    Get PDF
    We show that the (001) surface of GaSb can be cleaned efficiently by exposure to atomic hydrogen at substrate temperatures in the range 400–470 °C. This treatment removes carbon and oxygen contamination, leaving a clean, ordered surface with a symmetric (1 × 3) reconstruction after a total H2 dose of approximately 150 kL. An ordered but partially oxidized surface is generated during cleaning, and the removal of this residual oxide is the most difficult part of the process. Auger electron spectroscopy and low energy electron diffraction were used to monitor the chemical cleanliness and the ordering of the surface during the cleaning process, whereas high resolution electron energy loss spectroscopy was used to probe the electronic structure in the near-surface region. The results obtained indicates that this cleaning procedure leaves no residual electronic damage in the near-surface region of the Te-doped (n ~ 5 × 1017 cm – 3) samples of GaSb(001) studied

    New Records of Five Ground Beetles From Ohio (Coleoptera: Carabidae)

    Get PDF
    Five ground beetles (Carabidae), Carabus sylvosus, Elaphrus americanus, Cyclotrachelus incisus, Piesmus submarginatus and Amara crassispina are reported from Ohio for the first time

    Controlled oxide removal for the preparation of damage-free InAs(110) surfaces

    Get PDF
    Controlled oxide removal from InAs(110) surfaces using atomic hydrogen (H*) has been achieved by monitoring the contaminant vibrational modes with high resolution electron energy loss spectroscopy (HREELS). The contributing oxide vibrational modes of the partially H* cleaned surface have been identified. Following hydrocarbon desorption during preliminary annealing at 360 °C, exposure to atomic hydrogen at 400 °C initially removes the arsenic oxides and indium suboxides; complete indium oxide removal requires significantly higher hydrogen doses. After a total molecular hydrogen dose of 120 kL, a clean, ordered surface, exhibiting a sharp (1×1) pattern, was confirmed by low energy electron diffraction and x-ray photoelectron spectroscopy. Energy dependent HREELS studies of the near-surface electronic structure indicate that no residual electronic damage or dopant passivation results from the cleaning process
    • …
    corecore